Complex Numbers Review

Tuesday, September 28, 2021 6:37 PM

• Converting between algebraic and polar:
\nbiven Complex Numsur in algebraic form:
\n
$$
r + cj = Ae^{j\phi}
$$
 where $A = \sqrt{r^{2}+c^{2}}$, $\phi = tan^{-1}(\frac{c}{r})$
\nbiven Complex Numsur in polar form:
\n $Ae^{j\phi} = r * cj$ where $r = A cos(\phi) = A sin(\phi)$
\nNote: Given $b^{j\phi}$, since $b = e^{j\phi b}$, then $b^{j\phi} = e^{j(\ln(b))}\phi$

$$
M\dot{h}e^{2} \cos(\gamma) = \frac{e^{j\gamma} + e^{-j\gamma}}{2} \cos(\gamma) = \frac{e^{j\gamma} - e^{-j\gamma}}{2j}
$$

Signals & Systems

Thursday, September 23, 2021 6:24 PM

- Det Signals are some measurable property that is function of time.
- boul Find relationships between a system and the transformation of the input signal to the output signal. Note Systems considered will be LINEAR (eg. RLC circuits)

Linearity, Properties of RLC Components

Thursday, September 23, 2021 6:59 PM

Compare the
$$
Symbol
$$
 $Properky$ $Relatianship$ $Planators + V -$

\nInductor $\frac{+V}{I}$ L $-inductance$ $V(t) = L \frac{dI(t)}{dt}$ $V = j\omega LI$

\n1

Capaciter

\n
$$
C = capicitance
$$
\n
$$
T(t) = C \frac{\partial V(t)}{\partial t} \quad V = \frac{1}{j\omega L} I
$$
\nResisfor

\n
$$
-W - R = resistance \quad V(t) = RT(t) \quad V = RT
$$

Thursday, September 23, 2021 7:11 PM

1) superposition principle holds 2) sinusoid in, sinusoid out; the Siequency stays the same

Sinusoidal Functions

Thursday, September 23, 2021 7:15 PM

$$
Phasor
$$
 Representtation:
\nSuppose $f(x) = A cos(\omega t + \phi)$
\nthen : $f(x) = A e^{i\phi} \leftarrow phase$ form

Impedence

Thursday, September 23, 2021 7:46 PM

Phasor Method

Tuesday, September 28, 2021 6:38 PM

Superposition

Tuesday, September 28, 2021 7:25 PM

 I_{α} : Input N(t) = $Ae^{3\phi}$ + $Be^{3\phi}$ - ...
 ψ
 $\partial_{\alpha}t_{\beta\alpha}t$ Y(t) = $A'e^{3\phi'}$ + $Be^{3\phi'}$ - ...

Frequency Response

Thursday, September 30, 2021 6:41 PM

- · Given some circuit with input Vin, and output Vout $H(\omega)$ = $\frac{V_{out}}{V_{in}}$ is the frequency response and thus for any Vin! $V_{\text{out}} = H(\omega) \cdot V_{\text{in}}$ and it $V_{in} = A_{cos}(\omega t + \phi)$ then $V_{out} = |H(\omega)| \cdot A_{cos}(\omega t + \phi + \angle H(\omega))$
	- · Any system can be represented by a frequency response $H(\omega)$ • Any system can be represented as a Silter

Low Pass Filter

Thursday, September 30, 2021 7:16 PM

High Pass Filter

Thursday, September 30, 2021 7:25 PM

$$
H(\omega) = \frac{R}{R + 1/\varsigma \omega C} = \frac{\varsigma \omega CR}{1 + \varsigma \omega CR}
$$

\n
$$
|H(\omega)| = \frac{\omega CR}{\sqrt{1 + C\omega CR}}
$$

\n
$$
\angle H(\omega) = \frac{\pi}{2} - \xi \omega^{-1} (\omega CR)
$$

Band Pass Filter

Thursday, September 30, 2021 7:41 PM

$$
H(\omega) = \frac{R}{R + 3\omega L + \frac{1}{3\omega C}} = \frac{3\omega RC}{1 - \omega^{2}LC + j\omega CR}
$$

$$
|H(\omega)| = \frac{\omega RC}{\sqrt{(1 - \omega^{2}LC)^{2} + (\omega CR)^{2}}}
$$

$$
\angle H(\omega) =
$$

ECE 45 Page 12

Bode Plots

Tuesday, October 5, 2021 6:33 PM

[Magnitude] General Bode Plot Factors

Thursday, October 7, 2021 6:50 PM

[Magnitude] General Bode Plot for Pass Filters

 $|H(\omega)|$

[Phase] General Bode Plot Factors

Thursday, October 7, 2021 6:58 PM $10²$ 10° 10^{1} $H(\omega) = \frac{a}{\omega}$, $tan^{-1}(\frac{a}{\omega})$ $45°$ a_{p} $\pi/2$ $H(\omega) = \frac{\omega}{\alpha} 6\pi^{-1}(\frac{\omega}{a})$ $\tau_{\bm{\nu}}$ π lu ie $slop$ $\frac{d}{d}$ \int 00 $\overline{\mathcal{U}}$

Bode Plots for Basic Terms

Monday, October 25, 2021 5:20 PM

Fourier Series
\n**Exercise**
\n
$$
g(k) = H(\omega)h(k)
$$

\n $g(k) = H(\omega)h(k)$
\n $g(k) = H(\omega)h(k)$
\n $h(\omega) = \frac{g(k)}{1 + \omega^2} = \frac{g(k)}{1 + \omega^2}$
\n $g(k) = H(\omega)h(k)$
\n $h(\omega) = \frac{g(k)}{1 + \omega^2} = \frac{g(k)}{1 +$

Special Fourier Series Properties

Thursday, October 14, 2021 7:04 PM

1) Parreval Theorem: "A rerage power" of a signal is conserved in the spectrum
\n"average power" =
$$
\frac{1}{T_o} \int_{T_o} |f(t)|^2 dt
$$
 and special is the sequence of coefficients
\n
$$
= \frac{3e}{Z_{k\rightarrow\infty}} |C_k|^2
$$
\n2) $\mathbb{E} \{f(t)\} = \sum_{k \in \infty} C_k e^{j(k\omega_0 t - \int_0^x t(t) - \int_0^x t(t) \, dt)} = \sum_{k \in \infty} C_k e^{-j(k\omega_0 t - \int_0^x t(t) - \int_0^x t(t) - \int_0^x t(t)} = \sum_{k \in \infty} C_k e^{-j(k\omega_0 t - \int_0^x t(t) - \int_0^x t(t)} = \sum_{k \in \infty} C_k e^{-j(k\omega_0 t - \int_0^x t(t) - \int_0^x t(t)} = \sum_{k \in \infty} C_k e^{-j(k\omega_0 t - \int_0^x t(t) - \int_0^x t(t)} = \sum_{k \in \infty} C_k e^{-j(k\omega_0 t - \int_0^x t(t) - \int_0^x t(t)} = \sum_{k \in \infty} C_k e^{-j(k\omega_0 t - \int_0^x t(t) - \int_0^x t(t)} = \sum_{k \in \infty} C_k e^{-j(k\omega_0 t - \int_0^x t(t) - \int_0^x t(t)} = \sum_{k \in \infty} C_k e^{-j(k\omega_0 t - \int_0^x t(t) - \int_0^x t(t)} = \sum_{k \in \infty} C_k e^{-j(k\omega_0 t - \int_0^x t(t) - \int_0^x t(t)} = \sum_{k \in \infty} C_k e^{-j(k\omega_0 t - \int_0^x t(t) - \int_0^x t(t)} = \sum_{k \in \infty} C_k e^{-j(k\omega_0 t - \int_0^x t(t) - \int_0^x t(t)} = \sum_{k \in \infty} C_k e^{-j(k\omega_0 t - \int_0^x t(t) - \int_0^x t(t)} = \sum_{k \in \infty} C_k e^{-j(k\omega_0 t - \int_0^x t(t) - \int_0^x t(t)} = \sum_{k \in \infty} C_k e^{-j(k\omega_0 t - \int_0^x t(t)} = \sum_{k \in \infty} C_k e^{-j(k$

Finding the Coefficients of Fourier Series, Integration

Tuesday, October 19, 2021 6:34 PM

Remember:
$$
f(\epsilon) = \sum_{k=-\infty}^{\infty} C_k^{jk} \omega_o t
$$

 $C_n = \frac{1}{T_0} \int_{T_0} f(t) \cdot e^{-jn \omega_o t} dt$ where $T_0 = \frac{2\pi}{\omega_o}$

$$
\frac{F_{\text{wampile}}}{};
$$
\n
$$
G_{o} = \frac{1}{T_{o}} \int f(t) dt = \frac{1}{T_{o}} \cdot 2T_{i} = \frac{2T_{i}}{T_{o}}
$$
\n
$$
C_{o} = \frac{1}{T_{o}} \int f(t) dt = \frac{1}{T_{o}} \cdot 2T_{i} = \frac{2T_{i}}{T_{o}}
$$
\n
$$
C_{k} = \frac{1}{T_{o}} \int f(t) e^{-j k \omega_{o} t} dt = \frac{1}{T_{o}} \int_{-T_{i}}^{T_{i}} 1 \cdot e^{-j k \omega_{o} t} dt = -\frac{1}{T_{o}} \cdot \frac{e^{-j k \omega_{o} t}}{j k \omega_{o} t}
$$
\n
$$
= -\frac{e^{-j k \omega_{o} T_{i}} - e^{j k \omega_{o} T_{i}}}{2j} \left(\frac{2}{T_{o} k \omega_{o}} \right) = \frac{2}{T_{o} k \omega_{o}} sin(k \omega_{o} T_{i})
$$
\n
$$
\int (t) = \sum_{k=0}^{\infty} \left(\frac{2}{T_{o} k \omega_{o}} sin(k \omega_{o} T_{i}) \cdot e^{j k \omega_{o} t} \right) + \frac{2T_{i}}{T_{o}}
$$

Example: given $f(t)$ = triangle name then $f(t)$ is the integral of a square wave $g(t)$: $\frac{1}{2}T_e$ $\overline{1}$ $-\frac{1}{2}$ T_o $T_{\rm o}$ $-7f$ $g(t) = \sum_{\substack{k = \infty \\ k \neq 0}}^{\infty} C_k e^{-j k \omega_o t} + O$ $\int (t) = \int q(t) dt$ $5\circ$ then $f(t) = \sum_{\substack{k = -\infty \\ k \neq 0}}^{\infty} C_k \cdot e^{jk \omega_b t}$ + 0 $f(t) = \int_{k-\infty}^{\infty} C_k \tilde{e}^{jk\omega_s t}$ $dt = \sum_{k=\infty}^{\infty} \int C_k \tilde{e}^{jk\omega_s t} dt = \sum_{k=\infty}^{\infty} C_k \frac{e^{jk\omega_s t}}{jk\omega_s}$

ECE 45 Page 20

$$
\begin{array}{lcl}\n\zeta(t) &=& \int_{k-\infty}^{\infty} C_{k} e^{j k \omega_{0} t} \quad \text{d}t = & \sum_{k=\infty}^{\infty} \int_{k} C_{k} e^{j k \omega_{0} t} \quad \text{d}t = & \sum_{k=\infty}^{\infty} C_{k} \quad \text{if } \omega_{0} \quad \text{for } k \neq 0 \\
\text{for } c_{k} = \frac{C_{k}}{j k \omega_{0}} \quad \text{if } c_{k} = \frac{C_{k}}{
$$

Finding the Coefficients of Fourier Series, Simpler

Tuesday, October 19, 2021 7:12 PM

$$
C_{o} = \frac{2T_{1}}{T_{o}} \qquad C_{\kappa} = \frac{2}{T_{o}k\omega_{o}} \qquad \text{sin}(k\omega_{o}T_{1})
$$
\n
$$
\oint (t) = \sum_{\substack{k=-\infty \\ k \neq 0}}^{\infty} \left(\frac{2}{T_{o}k\omega_{o}} \sin(k\omega_{o}T_{1}) e^{-\int k\omega_{o}t} \right) + \frac{2T_{1}}{T_{o}}
$$

Monday, October 25, 2021 5:40 PM

Fourier Series As Input/Output to System

Thursday, October 21, 2021 6:42 PM

Given the system:

\n
$$
\frac{f(t)}{\sqrt{\frac{f(t)}{k}}}\sqrt{\frac{f(t)}{k}} = \frac{g(t)}{\sqrt{\frac{g(t)}{k}}}
$$
\nif

\n
$$
f(t) = \sum_{k=-\infty}^{\infty} C_k e^{j k \omega_o t}
$$
\nthen

\n
$$
g(t) = \sum_{k=-\infty}^{\infty} |H(k \omega_o)| C_k e^{j k \omega_o t} + L H(k \omega_o)
$$

Tuesday, November 2, 2021 6:32 PM

Use We can should a sinusoidal exponential to the any non-particle signal	
Appauch:	13.86 of with the FS of special signal
Value	which the the SS of special original representation in terms of Fourier Transform
Udu	when the sum of the general representation in terms of Fourier Transform
Udu	when the function $f(x)$ depends, further and further into the form
As $\omega_0 \rightarrow 0$, the sample to the first coefficient and boundary	
As $\omega_0 \rightarrow 0$, the sample to the first coefficient, the form of the form	
As $\omega_0 \rightarrow 0$, the sample to the form of the form of the form	
100	Similarly, we can define the Fourier transform by:
11	Finally, we can define the Fourier transform by:
12	Finally, we can define the Fourier transform by:
13	If $f(x)$ is a periodic singular, and $f(x)$ is the corresponding non-particle signal:
14	If $f(x)$ is a periodic singular, and $f(x)$ is the corresponding non-particle signal:
15	If $f(x)$ is a positive number of functions, and $f(x)$ is the corresponding non-particle signal:
16	If $f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(y \omega) e^{j\omega x} \, dw$
16	If $f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(y \omega) e^{j\omega x} \, dw$
16	If $f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(y \omega) e^{j\omega x} \, dw$

Special Fourier Transform Properties

Thursday, November 4, 2021 7:01 PM

Ideal Pulse, Delta

Tuesday, November 9, 2021 7:21 PM

With $\chi(t)$ and $\chi(j\omega)$:

 τ .

 $\overline{1}$

 $\gamma(\epsilon)$

 \mathbf{r}

 $-\overline{1}$

 $X(j\omega)$ 1

 \overline{A}

 27

 $\frac{1}{\sqrt{2}}$

lim, X(ju) becomes all frequencies, ω $x(t)$ becomes a narrow pulse.

as
$$
\lim_{T_1 \to \infty}
$$
, $\pi(F)$ becomes a constant frequency
\n $T_1 \to \infty$
\n $\pi(F)$ becomes infinite at $\omega = 0$ and 0 everywhere else
\n $\pi(F)$ for π

Fundamental Properties of Delta-Function (Integral)

Thursday, November 18, 2021 7:16 PM

$$
Det\n\n\begin{aligned}\n\text{Lundamental Property of} & \text{S-functions:} \\
\int f(t) \cdot \delta(t) dt &= f(0) \\
\text{and} & \int f(t) \cdot \delta(t - t_o) dt = f(t_o) \\
\text{Out} & \delta(at) &= \frac{1}{|a|} \delta t, \quad \delta(-t) = \delta(t)\n\end{aligned}
$$

Example with Square Wave

Tuesday, November 9, 2021 6:39 PM

Example with Step Function

Tuesday, November 16, 2021 7:28 PM

$$
\frac{F_{\alpha}}{1}
$$
\n
$$
F_{\alpha}(f(t)) = u(t) \cdot e^{-\int \frac{t}{\alpha}} \cdot f(t) e^{-\int \frac{t}{\alpha}} \cdot e^{-\int \frac{t}{
$$

$$
\frac{F_{\infty}}{\pi} \text{ given } u(t) = \lim_{T \to \infty} f(t) \qquad \text{thus} \qquad FT(u(t)) = \lim_{T \to \infty} \frac{1/T}{1/T^{2} + w^{2}} - j \frac{w}{1/T^{2} + w^{2}}
$$
\n
$$
= \begin{cases} -\frac{j}{\omega} & \text{for } w \neq 0 \\ \infty & \text{for } w = 0 \end{cases}
$$
\n
$$
= \begin{cases} -\frac{j}{\omega} & \text{for } w \neq 0 \\ \pi \delta(w) & \text{for } w = 0 \end{cases}
$$
\n
$$
= -\frac{j}{\omega} + \pi \delta(w)
$$

Example with Square Wave

Tuesday, November 2, 2021 7:08 PM

Fourier Transform as Input/Output to System

Thursday, November 4, 2021 6:41 PM

Given the system!

$$
\frac{\chi(t)}{\chi(t)} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \chi(j\omega) e^{j\omega t} du
$$
 then

$$
\chi(j\omega) = \int_{-\infty}^{\infty} \chi(t) e^{-j\omega t} du
$$

 $y(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \chi(j\omega) H(\omega) e^{j\omega t} d\omega$ $Y(j\omega) = X(j\omega) + H(\omega)$

General Method of Solving FT Systems

Thursday, November 4, 2021 6:51 PM

Given a signal
$$
\alpha(t)
$$
, and system $H(\omega)$

\n1) compute $FT(\alpha(t)) \rightarrow \gamma(t_j\omega)$

\n2) Multiply $\gamma(t_j\omega)H(\omega) = \gamma(t_j\omega)$

\n3) compute $FT'(Y(t_j\omega)) \rightarrow y(t)$

Summary of Properties of FT

Tuesday, November 23, 2021 6:35 PM

Time Scaling:
$$
\chi(at) \leftrightarrow \frac{1}{|a|} \chi(\frac{Im}{a})
$$

Time Shift: $\chi(t - t_0) \leftrightarrow \chi(j\omega) e^{-j\omega t_0}$
Mul by Complex: $\chi(t) e^{j\omega_0 t} \leftrightarrow \chi(j(\omega - \omega_0))$
Time Frequency Multiply: $i + \chi(t) \leftrightarrow \chi(j\omega)$ then
 $\int \chi(t) dt = \chi(0)$

$$
Derivel, ve / In legral : \t\t(k) \longleftarrow \t\t(k) \t\t\t(N (jw)_{l,:}
$$

Convolution

Tuesday, November 23, 2021 6:41 PM

$$
\begin{array}{lll}\n\text{Det} & \text{Liven} & \text{funckians} & f(t) \iff F(j\omega) \\
\text{det} & \text{Cij}\omega & \text{thean:} \\
\text{det} & \text{
$$

and'

 $Id_{\epsilon\alpha}$

Convolution Property of Delta Function, Examples

Tuesday, November 23, 2021 6:43 PM

Let from some $f(t)$:
$f \circ S(t) = f(t)$
$f \circ S(t) = f(t)$
$f \circ S(t) = f(t)$
$f \circ \pi(t) = \pi(t-1) = \pi(t)$
$f \circ \pi(t) = \pi(t) = \pi(t)$
$f \circ \pi(t) = \pi(t) = \pi(t)$
$f \circ \pi(t) = \pi(t) = \pi(t) = \pi(t)$
$f \circ \pi(t) = \pi(t) = \pi(t) = \pi(t) = \pi(t)$
$f \circ \pi(t) = \pi(t) = \pi(t) = \pi(t) = \pi(t)$
$f \circ \pi(t) = \pi(t) = \pi(t) = \pi(t) = \pi(t)$
$f \circ \pi(t) = \pi(t) = \pi(t) = \pi(t) = \pi(t)$
$f \circ \pi(t) = \pi(t) = \pi(t) = \pi(t) = \pi(t)$
$f \circ \pi(t) = \pi(t) = \pi(t) = \pi(t) = \pi(t)$
$f \circ \pi(t) = \pi(t) = \pi(t) = \pi(t)$
$f \circ \pi(t) = \pi(t) = \pi(t) = \pi(t) = \pi(t) = \pi(t)$
$f \circ \pi(t) = \pi(t) = \pi(t) = \pi(t) = \pi(t) = \pi(t)$
$f \circ \pi(t) = \pi(t) = \pi(t) = \pi(t) = \pi(t) = \pi(t)$
$f \circ \pi(t) = \pi(t) = \pi(t) = \pi(t) = \pi(t) = \pi(t)$
$f \circ \pi(t) = \pi(t) = \pi(t) = \pi(t) = \pi(t)$
$f \$

1)
$$
F(p) = \sqrt{2 \int \ln(1 + \sqrt{2}) \cdot \ln(1 + \sqrt{2})} \cdot \int_{0}^{1} e^{-ax} \cdot e^{-b(1-x)} \cdot \int_{0}^{1} e^{-ax} \cdot e^{-b(1-x)} \cdot \int_{0}^{1} e^{ax} \cdot e^{-b(1-x)} \cdot \int_{0}^{1} e^{(b-a)x} \cdot e^{-b(1-x)} \cdot \int_{0}^{1} e^{(b-a)x} \cdot \int_{0}^{1} e^{(b-x)x} \cdot \int
$$

 \in \rightarrow \perp

Sampling Theorem Tuesday, November 23, 2021 7:09 PM

Det The Sampling Theorem: We can bake a time dependent signal into a set of discrete values

by sampling the signal at small time intervals.

Specifically: because an auchio signal has firste range (bandwidth) then extracting Samples at the signal intime copies the spectrum intreguency

$$
\textcolor{red}{\textcolor{blue}{\textbf{min}}}\qquad \textcolor{red}{\textbf{max}}\qquad \textcolor{red}{\textbf{max}}\qquad \textcolor{red}{\textbf{max}}
$$

Thus: sampling a signal in time domain corresponds to replicating its spectrum in frequency domain across the frequencies.

$$
P_{\text{LOO}}f: (given some periodic signal \times lk) = \sum C_{k} e^{j\omega_{0}kt}
$$
\nthen: $FT(\alpha kt) = \sum C_{k} \cdot 2\pi \delta(\omega - k\omega_{0})$
\n $TH = y(t) = \sum \delta(\omega - k\omega_{0})$ then $y(t) = \sum c_{k} e^{j k\omega_{0}t}$ where $C_{k} = \frac{1}{T} \int \delta(t) e^{-j k\omega_{0}t} dt = \frac{1}{T}$
\nand $FT(y(t)) = \frac{1}{T} \sum 2\pi \delta(\omega - k\omega_{0}) = \frac{2\pi}{T} \sum \delta(\omega - k\omega_{0})$
\nthus: if we sample a periodic signal with ideal pulse:
\n $\int \lambda(t) = \lambda(t) \cdot \sum \delta(t - kT)$
\nthen: $FT(z(t)) = \frac{\omega_{0}}{2\pi} \times (\omega) \cdot \sum \delta(\omega - k\omega_{0})$
\n $= \frac{\omega_{0}}{2\pi} \sum \lambda(\omega - k\omega_{0})$

which is the spectrum repeabed every kwo

Then: the sampling frequency $\omega_o = \frac{2\pi}{7}$, $\omega_o > 2w$, where w is the highert <u>Def</u> frequencies of the input signal.

Allenatively: Given some signal x(1) with maximum bandwidth W<00 then $\omega_{\sigma} > 2w$ is the sampling frequency.

How to Apply The Sampling Theorem

Sunday, December 5, 2021 6:25 PM

